
Technical Paper 2013-2
Optimal	Search	for	a	
Moving	Target	with	
Two‐Way	Patch	
Constraints

Jeff	Johnson,	Director	of	Business	Solutions,		Supported	Intelligence	LLC

Supported	Intelligence	Technical	Paper	Series,	2013

This technical paper presents an application of a novel recursive method, using the Rapid
Recursive® Toolbox, to quickly determine an optimal path in the search for a moving target.

Potential areas of application for this model are numerous and include civil aviation; remote
sensing, particularly with unmanned aerial vehicles; and the military, especially targeting
weapons systems and intelligence.
 © 2014 Supported Intelligence LLC

Technical Paper 2013-2
I. Abstract

This technical paper presents an application of a novel recursive
method, using the Rapid Recursive® Toolbox, to quickly determine
an optimal path in the search for a moving target.

Potential areas of application for this model are numerous and
include:

• civil aviation;
• remote sensing, particularly with unmanned aerial vehicles; and
• the military, especially targeting weapons systems and intelli-

gence.

The classic search problem is organized as follows: In each period a
searcher must select one cell from the search grid in which to look for
the target. If the target is apprehended before the end of the game, the
searcher receives a reward. If, however, the target successfully evades
capture, the target wins and no reward is given to the searcher.
Throughout the game, the target moves around the search grid in an
effort to evade capture.

The problem is complicated by logical constraints on the actions of
the searcher and the movement of the target (referred to as “two-way
path constraints”). Use of the novel recursive method allows the
quick calculation of an optimal path and values associated with each
stage based on the parameters of the game.

To demonstrate this new technology we apply it to a problem posed
in a 1984 paper from the US Naval Postgraduate School. The results
of that paper are approximately replicated below, through a process
completed in only a few seconds on a modern laptop in contrast with
the roughly 19 minutes on IBM’s top-of-the-line mainframe needed
30 years ago.
 © 2014 Supported Intelligence LLC 1

Technical Paper 2013-2
II. Introduction

Searching for a moving target is never easy. Decisions based on
numerous assumptions and detailed calculations must be made
quickly and accurately to ensure the best chance of apprehending the
target. Recognizing the ultimate structure of these situations and
framing them as sequential decision problems allows for the formula-
tion of smaller subproblems that are much easier to solve. Novel
recursive solution methods can then be easily applied, adapted, and
updated.

In addition to rapid calculation, the recursive solution method1 tracks
the actual decision making process more closely than other available
methods. It does so by partitioning the game into separate periods, at
the beginning of which decisions are made. Each decision calculated
under this method takes into account the state of the world and the
information available to the searcher at the time of the decision rather
than calculating some initially optimal path and assuming the
searcher will blindly follow it. Where other methods provide infor-
mation used as an intermediate step in determining the optimal deci-
sion the recursive method delivers actionable results based on
changing information.

Eagle provides an extended discussion of a classic example on this
topic. He poses a problem where the searcher must find a moving tar-
get in ten periods or less, otherwise the target escapes. Calculations in
this model are complicated by the presence of path constraints for
both the searcher and the target. Given the size and complexity of the
model, Eagle required over 19 CPU minutes on a top-of-the-line IBM
mainframe to obtain a solution using his own custom-written FOR-
TRAN H code. Solving a generalized form of the model on the same
equipment required 152 CPU minutes (over two and a half hours!),
and this only after the code was running successfully all the way
through.

This paper provides a formulation of search games as sequential deci-
sion processes and demonstrates the recursive solution method using
a specific example. In particular, this paper aims to demonstrate the
value of formulating these problems in the manner described, as well
as the benefits of using the Rapid Recursive® Toolbox when it comes
time to solve these models. Whereas Eagle’s code only solved the
model, the Rapid Recursive® Toolbox composes, error-checks,
solves, and displays results for the model, all while earning the name

1. Presented by Eagle (1984), among others.
 © 2014 Supported Intelligence LLC 2

Technical Paper 2013-2
“Rapid.” Rather than 20 minutes with a mainframe that filled its own
room, these models can now be solved in a matter of seconds on a
modern laptop.

OUTLINE The rest of this technical paper is organized as follows: Section III
presents the general model and introduces the specifics of the exam-
ple. Section IV details the set-up of the problem for use with the
recursive solution method and finally Section V discusses the results
of using said method to solve the specific example.

ACKNOWLEDGEMENTS I must express my sincere gratitude to the people who made this
paper possible. Their contributions to this work were invaluable,
making this paper better and the writing process smoother. They are:

• Tyler Theile, who conducted a thorough review of the contents,
formatting, and grammar;

• David Quach, who offered excellent suggestions on earlier drafts,
as well as some much-needed technical assistance; and

• Patrick L. Anderson, whose guidance and support helped me at
every stage of this process to keep going and to push for more.
 © 2014 Supported Intelligence LLC 3

Technical Paper 2013-2
III. Characterization of the Model

OUTLINE OF THE
GAME

The model presented in this technical paper may rightly be thought of
as a form of the childhood game of cops and robbers. In this case one
cop (the searcher) chases one robber (the target), with the goal of
apprehending the robber before the game ends. Should he be success-
ful, the cop is rewarded. If he fails to catch the robber, however, the
cop receives no reward and the robber runs free. The model assumes
no error in identifying the target: if the searcher searches the cell con-
taining the target at any point, the target will be found with certainty.

The formalized model takes place on a grid representing the entire
search area, say the backyard in the framework above. Extending the
model to a higher-stakes arena, the grid could cover a city block, an
entire city, or even an area encompassing multiple cities. This model
can easily be expanded to cover all possible target destinations.

STARTING POINTS In many situations, the exact starting point of the target is unknown to
the searcher. Often, however, some information exists in the form of
the last known location of the target. Think of this as a tip received by

a police officer.2 This model assumes that the searcher is privy to
such information, but has no additional knowledge of the target’s
location. Thus the game begins in the period immediately following
the target’s known location. Essentially the searcher knows the tar-
get’s position in Period 0 and begins his search in Period 1, after the
target has had sufficient time to move to another cell.

In addition to the known starting location for the target, the model
also takes an exogenous parameter for the searcher’s starting loca-
tion. This establishes the first neighborhood (see Figure 1 on page 5)
of cells accessible by the searcher. It is assumed that both the
searcher’s starting point and the target’s last known location are on
the search grid.

PATH CONSTRAINTS With the search grid visualization come natural path constraints. Each
cell on the grid is connected to the others either directly (the cells
share a border), or indirectly via other cells. These connections lead
to the construction of cell neighborhoods, or groups of adjacent cells.

2. Note that this model assumes the tip is 100% accurate. Easy changes allow
the model to incorporate uncertainty, modeling the cases where the target may
have been misidentified by the person providing the tip or where the location
may be incorrect (the tip-giver may recall seeing the target, but not exactly
where the sighting occurred).
 © 2014 Supported Intelligence LLC 4

Technical Paper 2013-2
Definition: A cell’s neighborhood, denoted C[i] for Cell i, is
the set containing cell i and all adjacent cells. Only cells that
share a border (not just a vertex) with cell i are considered
adjacent to cell i. As an example, C[9] from Figure 1 below
is the set {6, 8, 9}.

Figure 1: Search Grid (3x3) with C[9] Shaded

Though the grid succeeds at segmenting the search space, it does not
imply that the search space is discrete, rather that it is continuous. For
this reason, the model restricts the searcher and the target to moving
between the cells in the neighborhood of their current location only to
prevent path discontinuities. In each period, the searcher or target
may stay in the current cell or move at most one cell away from their
current location. This movement complicates the searcher’s strategy
by forcing him to consider not only the target’s likely location in the
current period, but also in future periods in order to maximize the
probability of finding the target before the end of the game.

One can further understand the need for path constraints as follows:
once the searcher or target has entered the search grid they must
move through it in a continuous path. Neither party has the option of
skipping entire cells on their way through the grid. The costs of
searching a given cell while passing through are negligible, such that
it always makes sense for the searcher to conduct a search, even if he
is simply passing through a cell on his way to one with higher proba-
bility of containing the target. Time periods are constructed such that
neither the searcher nor the target may move more than one cell away
from their current location in the time between periods.

1 2 3

4 5 6

7 8 9
 © 2014 Supported Intelligence LLC 5

Technical Paper 2013-2
TARGET MOTION This model takes the perspective of the searcher, and solves for the
optimal path from there. As a result, the target’s movements through
the search grid must be treated exogenously. In this case it is assumed
that the target’s motion follows a Markov process independent of the
searcher’s path decisions. These assumptions allow the target more
freedom as opposed to defining a single path for the target to take.
Essentially this method models the situation where the target makes
observations at each point in the game and acts upon them in an effort
to minimize his probability of being caught.

Another benefit of this specification is that the searcher can easily put
himself in the shoes of the target and identify a likely description of
the target’s strategy. If the searcher determines at any point in the
game that his model for the target’s motion can be improved, the
change is simple, quick, and relatively low-cost. This ability to make
nearly real-time changes makes the model quite valuable in real-
world applications.

The target faces the same path constraints as the searcher. Thus the
target cannot move from his current location, s, to a cell outside of
C[s] in a single period.

Eagle refers to the target’s motion as a Partially Observable Markov
Decision Process (POMDP), and this characterization is maintained
here. The model clearly demonstrates the Markov property, “which
intuitively means that all the information useful to predict the next
time period is contained in the information available in the current

time period.”3 The partially observable portion stems from the fact
that this information is not known with certainty. In the case of a
strict Markov Decision Process the location of the target would be
fully observable at the end of each period. Here, however, the only
period in which this holds is Period 0. In all subsequent periods, the
target’s location is described by a vector of probabilities. Thus the
searcher has an idea as to where the target may be, but never com-
plete information.

EXAMPLE MODEL
SPECIFICS

For illustrative purposes, the rest of this technical paper examines a
specific instance of the general search model outlined above. In this
example the search grid is 3x3 (see Figure 1 on page 5), the searcher
starts in Cell 1, and the target was last seen in Cell 9. The game termi-
nates in one of two situations: when

1. the target is found and attacked; or
2. the target successfully evades capture for nine consecutive

periods.

3. Anderson, Patrick L, (2013). The Economics of Business Valuation. Stanford
University Press. page 248.
 © 2014 Supported Intelligence LLC 6

Technical Paper 2013-2
Each allowable move,4 other than searching the same cell in consecu-
tive periods, costs the searcher $1. Searching the current cell again
costs the searcher $10, which includes the extra expense of hiding the
fact that the agent has decided to stay in the same location (which the
target would otherwise freely observe). Upon finding and attacking
the target, the searcher receives a reward of $1,000.

Target motion through the search grid is governed by the Markov
process presented in Eagle’s numerical example. Under this assump-
tion, the target remains in its current location with probability 0.4 and
moves to an adjacent cell with equal probability (0.6/m, where m is
the number of cells in the neighborhood of the current cell, excluding
the current cell). Figure 2 on page 7 depicts the target’s movement
from Cell 9, the last known location of the target in this example.
From here, one can see that the target moves to Cell 8 with probabil-
ity 0.3, Cell 6 with probability 0.3, and stays in Cell 9 with probabil-
ity 0.4. The value functional approach outlined below requires the
construction of a transition probability matrix, which here contains
the probabilities of the target moving from its current location to any
of the available cells in the next period. For the full transition proba-
bility matrix used and a more complete discussion of its use in this
example see Appendix II on page 17.

Figure 2: Sample Target Movement from Cell 9

4. Remember “allowable moves” consist of searching any of the cells in C[s]
where s is the current location of the searcher. Infinite costs are used to pro-
hibit the search of C[s].

6

0.3

8

0.3

9

0.4
 © 2014 Supported Intelligence LLC 7

Technical Paper 2013-2
IV. Value Functional Formulation

OVERVIEW In order to solve optimization problems of this type using the Rapid
Recursive® Toolbox, the models must first be specified in terms of a

value functional equation.5 Doing so allows the decomposition of the
larger problem into many two-stage optimization subproblems. Solv-
ing each of these and stringing their solutions together leads to the
identification of an optimal search path.

THE CONCEPT OF
VALUE IN THIS MODEL

The first step in using the value functional approach to solve a prob-
lem like the one presented here is to define a concept of value for the
model. In this case, the natural construct of value stems from the ben-
efit to the searcher of apprehending the target and the related search
costs. In each period the searcher chooses one cell to search. Doing
so, he incurs a cost of either $1 or $10 (see above). Once he finds the
target, however, he is rewarded with $1,000. Thus the value for each
specific period is the sum of the immediate reward (or cost) from
being in that period and choosing optimal action and the discounted
expected value from all future periods. Whereas earlier methods
solve the classic search problem based on maximizing the probability
of catching the target, this model realistically incorporates cost and
calculates an optimal path by maximizing the value over the entire
game. In cases where search costs and rewards are non-negligible,
this approach will assist the searcher in the important decision of just
how valuable the search is. Note that the probability of catching the
target directly influences the value in a given period since capturing
the target is the only way for the searcher to obtain a positive reward.
Thus the discounted expected value of future periods takes into
account the likelihood of apprehending the target before the end of
the game. A mathematical characterization of this idea follows below.

STATE AND ACTION
SPACES

Another part of using the value functional approach involves specify-
ing discrete state and action spaces to characterize the model. The
state space captures all information available to the searcher at a
given time, and the action space includes all possible actions the
searcher may choose between.

For this model the states contain both the number of the current
period and the current location of the searcher (last cell searched).
Two additional states represent the situations where the target has

5. See Anderson (2013) for extensive coverage of the value functional iteration
approach to optimization and valuation problems.
 © 2014 Supported Intelligence LLC 8

Technical Paper 2013-2
been found (in any period) or the game has ended. In all there are 83
states (81 to cover all of the possible period-location pairs plus the
two outlined above) in this model.

The action space for the searcher in any time period includes search-
ing any of the cells in the neighborhood of the current location, as
well as the option to attack, but only if the target has been found.
Notice that the action space changes based on the period and the
searcher’s current location. Once the game has ended, the only action
available is to attack (since this is the only action that does not
involve continued searching).

THE VALUE
FUNCTIONAL

At each stage of the game the searcher faces the task of maximizing
both the reward in the current period and the discounted expected
reward from future periods. Knowing this, a value functional can be
created as follows:

Let f(s,x) represent the immediate reward to the searcher from being
in state s and choosing action x. Then the value of a specific state can
be represented by

Value Functional Equation (EQ 1)

where Γ represents the set of all action choices available to the

searcher in time t, ß is the discount factor6 in use by the searcher, and
E[•] is the expectation operator. Recall that based on the formulation
of the model above, Γ consists of searching any of the cells in C[s] or
“attacking” the target if the location is known.

An optimal search path maximizes V(st) for all periods t. The Rapid
Recursive® Toolbox allows for quick evaluation of this recursive
model, which in turn provides guidance to the searcher in the early
periods where the probability of finding the target in any of the neigh-
boring cells is zero. Without the ability to look ahead into the game,
all available actions in the first period appear the same. They may not
be, however, as future action sets are determined by past actions and
thus the choice made in the first period carries great importance by
setting up future actions with higher expected rewards.

6. In general, the discount factor ß can be calculated using the formula
ß = (1+g)/(1+d) where g is the growth rate and d is the discount rate. This
model assumes a growth rate g=0. See Anderson (2013, Chap. 16) for more
information.

 1() max (,) ()t tx
V s f s x E V s

 © 2014 Supported Intelligence LLC 9

Technical Paper 2013-2
V. Results

OVERVIEW A summary of the results from running the above model through the

Rapid Recursive® Toolbox is presented below.7 In the process of
solving the problem, the software calculated the optimal action and
corresponding value for each of the 83 states. Included here are a
summary of the results by period when the identified optimal search
path is followed and a visualization of this optimal path and the evo-
lution of the target’s location.These results are shown in full in
Appendix III on page 18. For a full description of the inputs and out-
puts for running this model with the Rapid Recursive® Toolbox see
Appendix IV on page 19.

The results below indicate, for each time period, the action that maxi-
mizes the value functional from the Equation (EQ 1) for that time

period. There is an inherent trade-off8 in this equation between the
immediate reward (the probability of finding the target now) and dis-
counted future rewards (the probability of finding the target in any of
the remaining periods, given a certain action in the current period).
Thus the optimal move simultaneously maximizes the searcher’s
chances of finding the target in the current period while also putting
the searcher in the best position to find the target in a later period
should the current-period search fail to locate the target.

A NOTE ON EAGLE’S
MODEL

When James Eagle published his paper on this topic in 1984, his solu-
tion method consisted of running custom FORTRAN H code on an
IBM 3033. IBM offers the following description of the 3033 on their
website:

Back when Jimmy Carter was the newly inaugurated
President of the United States, the industry publication
Datamation termed it “the big bombshell” of IBM’s
spring product announcements. THINK magazine later
simply dubbed it—”The Big One.”

The two publications were referring to the IBM 3033,
the company’s new top-of-the-line processor. When it
was rolled out on March 25, 1977, the 3033 eclipsed
the internal operating speeds of the company’s previ-
ous flagship—the System/370 Model 168-3—by 1.6

to 1.8 times.9

7. All code pertaining to this specific example was created by the author.
8. See Anderson’s (2013, Chap. 15) discussion of “Euler tension” for more

information.
 © 2014 Supported Intelligence LLC 10

Technical Paper 2013-2
Even with the best computer available, Eagle’s method “required a
total of 19.3 CPU minutes”—minutes, not seconds!—to find the opti-
mal search paths. Keep in mind that this was not due to inefficient
methods on Eagle’s part: his paper outlines an elegant and concise
methodology for streamlining the calculations required by this
model. In contrast, using the Rapid Recursive® Toolbox today
requires only fractions of a second to find an optimal path.

A COMPARISON TO
EAGLE’S RESULTS

Eagle presented a complex formulation of this classic search prob-
lem, along with a new method for solving it. While his methods are
not directly matched here, a comparison is presented in Figure 3
below, to demonstrate the close similarities between the solution
methods.

The results from the Rapid Recursive® Toolbox rely on the same
starting points for the searcher and target as Eagle’s model. Further-
more, the Markov process underlying the target’s motion is the same
in both models. Eagle’s model, however, updates the probability of
finding the target in a given cell in the next period after every search.
Thus, in Eagle’s model, the probability of finding the target in Cell 6
in Period 3 is the probability that the target is in that cell during that
period given that the target was not in the cells searched in the first
two periods. The model developed in this paper does not make these
updates.

Figure 3: Comparison of Results: Rapid Recursive® (2013) and
FORTRAN H (1984)

The observant reader will quickly notice that whenever there is an
unambiguously optimal policy this model agrees with Eagle’s. There
is one case, however, in Period 9, where the optimal decision identi-
fied by this model does not align with any of those laid out by Eagle.
While it is true that the search options identified by Eagle (Cells 6
and 8) do have identical probabilities of containing the target in

9. “IBM’s 3033,” <www-03.ibm.com/ibm/history/exhibits/3033/
3033_intro.html>, accessed April 4, 2013.

Period
Rapid Recursive®

Policy
FORTRAN H

Policy
1 2 2 or 4
2 3 3, 5, or 7
3 6 6 or 8
4 9 9
5 6 6 or 8
6 5 5
7 6 6 or 8
8 5 5
9 5 6 or 8
10 5 5
 © 2014 Supported Intelligence LLC 11

Technical Paper 2013-2
Period 9, Cell 5 actually has a slightly higher chance based on the
underlying probabilities in this model and is thus reported as the opti-
mal cell to search.

OUTPUT FIGURES
AND DISCUSSION

In Figure 5 on page 14, one can clearly see the tendency of the target
toward Cell 5. Notice that the optimal path reaches Cell 5 in Period 8
and stays there for Period 9 even though doing so is ten times more
costly than searching any other neighboring cell. This stems from the
fact that the by Period 9 the likelihood of finding the target in Cell 5
is so much higher than that of finding him in any other cell that it is
worth paying a penalty of at least $9 to search that cell.

The summary table in Figure 4 on page 13 presents the results of the
model for each period when the identified optimal path is followed.
Consistent with the specifications of the model from Section II, the
table is constructed under the assumption that the searcher’s starting
location is Cell 1. One can quickly confirm this by looking at the
pane for Period 1 in Figure 5 on page 14 and noticing that the optimal
choice with no constraints would be to search Cell 9.

Comparing the relative values across periods in Figure 4 on page 13
provides an interesting perspective on this problem. The values can
be interpreted as an indicator of the probability of apprehending the
target before the game ends given that the game is in the indicated
period (see “The Concept of Value in this Model” on page 8 for a
review of this idea). As the game progresses, the probability of the
target being in any one specific cell diminishes rapidly, until the final
period when the cell with the highest probability of containing the
target, Cell 5, only yields a roughly 17% chance for the searcher to
win the game. The values peak in Period 3 and begin a steady decline
in Period 4. This represents the benefits of smart decisions in the
early periods, which place the searcher in a strong position by Period
3. The value of $441 indicates a nearly 50% chance of the searcher
apprehending the target between periods three and nine.

As a note, there are a few periods where multiple actions have the
same value (both the immediate reward and the discounted future
rewards are the same for multiple policy options). The software used
to solve this recursive model breaks these “ties” by choosing the first
such action. Assume, for example, that in a certain period searching
Cell 2 has the same value as searching Cell 4. In such a case, this
solution method would choose to search Cell 2. Thus the search path
represented here is not the unique optimal solution, but one of many
possible optimal solutions. No one of these tie-breakers is any better
than the others, but some method must be established in cases where
only one optimal path is reported.
 © 2014 Supported Intelligence LLC 12

Technical Paper 2013-2
Figure 4: Summary of Outputs by Period, Rapid Recursive® 2013

Figure 5 on page 14 shows the output obtained by running this model
through the Rapid Recursive® Toolbox. The grids show the probabil-
ity of the target being located in each cell for all nine periods of the
game. Note that darker colors indicate lower probabilities. The red
symbol on each plot indicates the optimal search decision for that
period, assuming the target’s location is still unknown. Cell numbers
have been omitted, but are understood to be consistent with those in
Figure 1 on page 5.

At first glance, one quickly notices that the probability distribution of
the target’s location seems to even out as the game goes on. This is
indeed true, and can be attributed to the fact that the searcher's infor-
mation about the target’s starting location essentially becomes stale
as the game goes on. The deeper into the game we go, the less of an
idea the searcher has about where the target may be. Another expla-
nation for this is that in Period 1 the target only has access to three
cells: 6, 8, and 9. By Period 9, however, the target could potentially
be anywhere on the grid, meaning the probability for his location is
distributed over all nine cells, an area three times larger than that of
Period 1.

Figure 5 on page 14 also clearly displays the tendency of the target
toward Cell 5. This can be confirmed numerically by calculating the

limiting distribution10 of the Markov chain for the target’s motion.
Doing so shows that the target will most frequently occupy Cell 5
(though this only accounts for his location less than 20% of the time).
Thus, as the game goes on and the searcher has less and less of an
idea where the target may be, the best policy is to repeatedly search
Cell 5, since the model of the target’s motion predicts he will eventu-
ally show up there with the highest likelihood.

10.See Sigman (2009) for a comprehensive introduction to the concept of limit-
ing distributions for Markov chains.

Period Value Policy
1 $351 2
2 $422 5
3 $441 6
4 $401 9
5 $376 6
6 $336 5
7 $287 6
8 $277 5
9 $129 5

Found $1,000 Attack
Game Over $0 Attack
 © 2014 Supported Intelligence LLC 13

Technical Paper 2013-2
Figure 5: Optimal Search Path and Evolution of Target Location
 © 2014 Supported Intelligence LLC 14

Technical Paper 2013-2
VI. Conclusion

This technical paper presented the idea of using Partially Observable
Markov Decision Processes to model target motion in the search for a
moving target. In addition, a specific example demonstrated the use
of the Rapid Recursive® Toolbox to solve such models in only a few
seconds—much faster than the almost 20 minutes on a mainframe
computer required just 30 years ago. Building on the model presented
by Eagle (1984), this paper included search costs and rewards to cre-
ate a more realistic picture of maximizing value in terms of expected
benefits rather than simply the probability of catching the target.

Though this technical paper presented only one specific example, the
model above can be easily generalized and applied in many fields.
Extensions can easily be made to incorporate more periods into the
game, or to obscure the information of the target’s starting location
(perhaps by delaying the start of the game). The practical applications
of this model reach into many fields, including law enforcement,
counterterrorism, animal control, and more. Potential searchers
include humans, land- or water-bound robots, and manned or
unmanned aerial vehicles.
 © 2014 Supported Intelligence LLC 15

Technical Paper 2013-2
Appendix I: References

SOFTWARE Matlab® is a product of The Mathworks; http://www.math-
works.com.

The Rapid Recursive® Toolbox is a product of Supported Intelli-
gence LLC; http://www.supportedintelligence.com.

SCHOLARLY
PUBLICATIONS

Anderson, Patrick L. (2013) The Economics of Business Valuation.
Stanford University Press.

Eagle, James N. (1984) “The Optimal Search for a Moving Target
When the Search Path is Constrained.” Operations Research, Vol. 32
No. 5 (Sep. - Oct., 1984), pp 1107-1115.

“IBM’s 3033,” <www-03.ibm.com/ibm/history/exhibits/3033/
3033_intro.html>, accessed April 4, 2013.

Ishida, Toru and Richard E. Korf. (1991). “Moving Target Search.”
IJCAI-91, pp. 204-210.

Melax, Stan. (1993). “New Approaches to Moving Target Search.”
AAAI Technical Report FS-93-02, pp. 30-38.

Sigman, Karl. (2009). Lecture Notes[PDF]. <www.columbia.edu/
~ks20/stochastic-I/stochastic-I-MCII.pdf>, accessed April 5, 2013.

Stone, Lawrence D. and Joseph B. Kadane. (1981) “Optimal Where-
abouts Search for a Moving Target.” Operations Research, Vol. 29,
No. 6 (Nov. - Dec., 1981), pp. 1154-1166.

Thomas, Lyn C. and Alan R. Washburn. (1991) “Dynamic Search
Games.” Operations Research, Vol 39, No. 3 (May - Jun., 1991), pp.
415-422.
 © 2014 Supported Intelligence LLC 16

Technical Paper 2013-2
Appendix II: Target Location Transition
Probability Matrix

The above matrix depicts the Markov process governing the target’s
motion in each period. Given the current cell s, the target stays in the
same place with probability 0.4 and moves to any of the other cells in
C[s] with equal probability (notice the exact value of this probability
changes with the size of C[s]).

In order to solve the example using the Rapid Recursive® Toolbox a
different transition probability matrix was created, representing the
probability of moving from a current state to a certain next period
state, given a certain action choice. Instead of the 9x9 matrix above,
this new transition matrix had dimensions 83x83x10 to account for
all of the possible states and actions. In a given current state (row),
the game moves to the “Found” state with probability equal to the
probability of the target being located in the searched cell in the given

period.11 From the same current state, the game moves to the next
period and the cell searched with a probability equal to one minus the
probability of moving to the “Found” state. From the ninth (terminal)
period, the game moves to the “Game Over” state if the target is not
found.

11.This probability can be found in the sth row of the vector n, where n = Ati
with A being the target transition matrix above, t the current period, and i a
vector capturing the target’s last known location. Here s represents the cell to
be searched.

1 2 3 4 5 6 7 8 9
1 0.4 0.3 0.3
2 0.2 0.4 0.2 0.2
3 0.3 0.4 0.3
4 0.2 0.4 0.2 0 0.2
5 0.15 0.15 0.4 0.15 0.15
6 0.2 0 0.2 0.4 0.2
7 0.3 0.4 0.3
8 0.2 0.2 0.4 0.2
9 0.3 0.3 0.4

Note: Omitted values are equal to 0.

C
u
r
r
e
n
t

C
e
l
l

Next Period Cell
Target Transition Matrix
 © 2014 Supported Intelligence LLC 17

Technical Paper 2013-2
Appendix III: Full Results Table

NOTE When reading the results table, keep in mind that the “State” column
represents the period-location pair for the searcher. “1-1” indicates
that the game is in its first period and the searcher is currently in cell
1. Also recall that some states will never occur due to the path con-
straints outlined above.

Full Table of Outputs

State Value Policy State Value Policy

1 1 350.84 Search 2 5 6 369.53 Search 5
1 2 397.84 Search 3 5 7 376.13 Search 8
1 3 538.78 Search 6 5 8 369.53 Search 5
1 4 397.84 Search 5 5 9 376.13 Search 6
1 5 538.78 Search 6 6 1 291.99 Search 2
1 6 576.22 Search 9 6 2 336.27 Search 5
1 7 538.78 Search 8 6 3 336.33 Search 6
1 8 576.22 Search 9 6 4 336.27 Search 5
1 9 567.22 Search 9 6 5 336.33 Search 6
2 1 340.59 Search 2 6 6 336.27 Search 5
2 2 422.20 Search 5 6 7 336.33 Search 8
2 3 478.61 Search 6 6 8 336.27 Search 5
2 4 422.20 Search 5 6 9 336.33 Search 6
2 5 478.61 Search 6 7 1 250.83 Search 2
2 6 496.77 Search 9 7 2 289.37 Search 5
2 7 478.61 Search 8 7 3 286.82 Search 6
2 8 496.77 Search 9 7 4 289.37 Search 5
2 9 487.77 Search 9 7 5 286.82 Search 6
3 1 346.15 Search 2 7 6 289.37 Search 5
3 2 409.91 Search 5 7 7 286.82 Search 8
3 3 440.73 Search 6 7 8 289.37 Search 5
3 4 409.91 Search 5 7 9 286.82 Search 6
3 5 440.73 Search 6 8 1 188.67 Search 2
3 6 441.49 Search 9 8 2 227.19 Search 5
3 7 440.73 Search 8 8 3 218.64 Search 6
3 8 441.49 Search 9 8 4 227.19 Search 5
3 9 440.73 Search 6 8 5 218.64 Search 8
4 1 337.21 Search 2 8 6 227.19 Search 5
4 2 394.79 Search 5 8 7 218.64 Search 8
4 3 407.82 Search 6 8 8 227.19 Search 5
4 4 394.79 Search 5 8 9 218.64 Search 8
4 5 407.82 Search 6 9 1 90.19 Search 2
4 6 400.61 Search 9 9 2 137.82 Search 5
4 7 407.82 Search 8 9 3 116.14 Search 6
4 8 400.61 Search 9 9 4 137.82 Search 5
4 9 407.82 Search 6 9 5 128.82 Search 5
5 1 320.64 Search 2 9 6 137.82 Search 5
5 2 369.53 Search 5 9 7 116.14 Search 8
5 3 376.13 Search 6 9 8 137.82 Search 5
5 4 369.53 Search 5 9 9 116.14 Search 6
5 5 376.13 Search 6 Found 1000.00 Attack

Game Over 0.00 Attack
 © 2014 Supported Intelligence LLC 18

Technical Paper 2013-2
Appendix IV:Input and Output Data for Recursive
Model

Data structures in Matlab® provide a convenient means for storing
variables of differing types when all of the variables are related to the
same model. Each variable is stored in a field of the structure. Exam-
ples of fields from the standard input structure used with the Rapid
Recursive® Toolbox include: S, the number of states, stored as a

number; statelabels,12 a list of the labels for each state, stored as a
cell; and the R and P matrices, stored as matrices. After defining each
of these, they are assigned to the appropriate field of the input struc-
ture for safekeeping. When it comes time to run the model using the
Rapid Recursive® Toolbox, the only necessary input argument is the
input structure, rather than all of the individual variables. In addition
to convenience, storing the variables in this way streamlines the
error-checking process conducted by the toolbox.

Key fields from the input structure for the model in this paper are
shown below.

Figure 1: Description of Input Structure

Figure 2: Description of Out Structure

12.Note that the first 81 state labels are of the form: period - last cell searched.
Thus 2-1 indicates that the game is in the second period and the searcher
decided to search Cell 1 in the first period.

Field Value or Type

desc 'Optimal Strategy in the Search for a Moving Target'
S 83
statelabels 1 1, 1 2, . . . , 9 8, 9 9, Found, Game Over
A 10
actionlabels Search 1, Search 2, . . . , Search 9, Attack!
formP 'Search for a moving target'
formR 'Search for a moving target'
beta 0.8333
d 0.2
g 0
verbose FALSE
T 9
note1 'P matrix calculated within RR toolbox'
note2 'R matrix calculated within RR toolbox'

Field Value or Type

desc 'Optimal Strategy in the Search for a Moving Target'
Input Input Structure
iterations 11
calculationtime 0.0066
algorithm 'Value function iteration'
 © 2014 Supported Intelligence LLC 19

Technical Paper 2013-2
Figure 3: Rewards Matrix: Input.R

Note the use of “-Inf” to prohibit certain actions, as described in
“Path constraints” on page 4.

Reward Matrix

Search 1 Search 2 Search 3 Search 4 Search 5 Search 6 Search 7 Search 8 Search 9 Attack!
1 1 10 1 Inf 1 Inf Inf Inf Inf Inf 1
1 2 1 10 1 Inf 1 Inf Inf Inf Inf 1
1 3 Inf 1 10 Inf Inf 1 Inf Inf Inf 1
1 4 1 Inf Inf 10 1 Inf 1 Inf Inf 1
1 5 Inf 1 Inf 1 10 1 Inf 1 Inf 1
1 6 Inf Inf 1 Inf 1 10 Inf Inf 1 1
1 7 Inf Inf Inf 1 Inf Inf 10 1 Inf 1
1 8 Inf Inf Inf Inf 1 Inf 1 10 1 1
1 9 Inf Inf Inf Inf Inf 1 Inf 1 10 1
2 1 10 1 Inf 1 Inf Inf Inf Inf Inf 1
2 2 1 10 1 Inf 1 Inf Inf Inf Inf 1
2 3 Inf 1 10 Inf Inf 1 Inf Inf Inf 1
2 4 1 Inf Inf 10 1 Inf 1 Inf Inf 1
2 5 Inf 1 Inf 1 10 1 Inf 1 Inf 1
2 6 Inf Inf 1 Inf 1 10 Inf Inf 1 1
2 7 Inf Inf Inf 1 Inf Inf 10 1 Inf 1
2 8 Inf Inf Inf Inf 1 Inf 1 10 1 1
2 9 Inf Inf Inf Inf Inf 1 Inf 1 10 1
3 1 10 1 Inf 1 Inf Inf Inf Inf Inf 1
3 2 1 10 1 Inf 1 Inf Inf Inf Inf 1
3 3 Inf 1 10 Inf Inf 1 Inf Inf Inf 1
3 4 1 Inf Inf 10 1 Inf 1 Inf Inf 1
3 5 Inf 1 Inf 1 10 1 Inf 1 Inf 1
3 6 Inf Inf 1 Inf 1 10 Inf Inf 1 1
3 7 Inf Inf Inf 1 Inf Inf 10 1 Inf 1
3 8 Inf Inf Inf Inf 1 Inf 1 10 1 1
3 9 Inf Inf Inf Inf Inf 1 Inf 1 10 1
4 1 10 1 Inf 1 Inf Inf Inf Inf Inf 1
4 2 1 10 1 Inf 1 Inf Inf Inf Inf 1
4 3 Inf 1 10 Inf Inf 1 Inf Inf Inf 1
4 4 1 Inf Inf 10 1 Inf 1 Inf Inf 1
4 5 Inf 1 Inf 1 10 1 Inf 1 Inf 1
4 6 Inf Inf 1 Inf 1 10 Inf Inf 1 1
4 7 Inf Inf Inf 1 Inf Inf 10 1 Inf 1
4 8 Inf Inf Inf Inf 1 Inf 1 10 1 1
4 9 Inf Inf Inf Inf Inf 1 Inf 1 10 1
5 1 10 1 Inf 1 Inf Inf Inf Inf Inf 1
5 2 1 10 1 Inf 1 Inf Inf Inf Inf 1
5 3 Inf 1 10 Inf Inf 1 Inf Inf Inf 1
5 4 1 Inf Inf 10 1 Inf 1 Inf Inf 1
5 5 Inf 1 Inf 1 10 1 Inf 1 Inf 1
5 6 Inf Inf 1 Inf 1 10 Inf Inf 1 1
5 7 Inf Inf Inf 1 Inf Inf 10 1 Inf 1
5 8 Inf Inf Inf Inf 1 Inf 1 10 1 1
5 9 Inf Inf Inf Inf Inf 1 Inf 1 10 1
6 1 10 1 Inf 1 Inf Inf Inf Inf Inf 1
6 2 1 10 1 Inf 1 Inf Inf Inf Inf 1
6 3 Inf 1 10 Inf Inf 1 Inf Inf Inf 1
6 4 1 Inf Inf 10 1 Inf 1 Inf Inf 1
6 5 Inf 1 Inf 1 10 1 Inf 1 Inf 1
6 6 Inf Inf 1 Inf 1 10 Inf Inf 1 1
6 7 Inf Inf Inf 1 Inf Inf 10 1 Inf 1
6 8 Inf Inf Inf Inf 1 Inf 1 10 1 1
6 9 Inf Inf Inf Inf Inf 1 Inf 1 10 1
7 1 10 1 Inf 1 Inf Inf Inf Inf Inf 1
7 2 1 10 1 Inf 1 Inf Inf Inf Inf 1
7 3 Inf 1 10 Inf Inf 1 Inf Inf Inf 1
7 4 1 Inf Inf 10 1 Inf 1 Inf Inf 1
7 5 Inf 1 Inf 1 10 1 Inf 1 Inf 1
7 6 Inf Inf 1 Inf 1 10 Inf Inf 1 1
7 7 Inf Inf Inf 1 Inf Inf 10 1 Inf 1
7 8 Inf Inf Inf Inf 1 Inf 1 10 1 1
7 9 Inf Inf Inf Inf Inf 1 Inf 1 10 1
8 1 10 1 Inf 1 Inf Inf Inf Inf Inf 1
8 2 1 10 1 Inf 1 Inf Inf Inf Inf 1
8 3 Inf 1 10 Inf Inf 1 Inf Inf Inf 1
8 4 1 Inf Inf 10 1 Inf 1 Inf Inf 1
8 5 Inf 1 Inf 1 10 1 Inf 1 Inf 1
8 6 Inf Inf 1 Inf 1 10 Inf Inf 1 1
8 7 Inf Inf Inf 1 Inf Inf 10 1 Inf 1
8 8 Inf Inf Inf Inf 1 Inf 1 10 1 1
8 9 Inf Inf Inf Inf Inf 1 Inf 1 10 1
9 1 10 1 Inf 1 Inf Inf Inf Inf Inf 1
9 2 1 10 1 Inf 1 Inf Inf Inf Inf 1
9 3 Inf 1 10 Inf Inf 1 Inf Inf Inf 1
9 4 1 Inf Inf 10 1 Inf 1 Inf Inf 1
9 5 Inf 1 Inf 1 10 1 Inf 1 Inf 1
9 6 Inf Inf 1 Inf 1 10 Inf Inf 1 1
9 7 Inf Inf Inf 1 Inf Inf 10 1 Inf 1
9 8 Inf Inf Inf Inf 1 Inf 1 10 1 1
9 9 Inf Inf Inf Inf Inf 1 Inf 1 10 1
Found Inf Inf Inf Inf Inf Inf Inf Inf Inf 1000
Game Over Inf Inf Inf Inf Inf Inf Inf Inf Inf 0

C
u
r
r
e
n
t

S
t
a
t
e

Action
 © 2014 Supported Intelligence LLC 20

Technical Paper 2013-2

Excerpt from Tr

Game Over
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
9 0.89
9 0.89
9 0.89
9 0.89
9 0.89
9 0.89
9 0.89
9 0.89
9 0.89

Foun 1.00
ame ove 1.00

C
u
r
r
e
n
t

S
t
a
t
e

Figure 4 below presents a small excerpt from the transition pro ability
matrix. Given the specifics of this model, the full transition probabil-
ity matrix has size 83x83x10, which is much too large to show here.
As such, Figure 4 below shows only a portion of this matrix, corre-
sponding to the action “Search 2,” to give the reader a taste of what
the transition probability matrix looks like. For readability, zero-val-
ued cells are left blank.

Figure 4: An Excerpt from the Transition Probability Matrix: Input.P

A NOTE ON READING
THE P MATRIX

When reading the above matrix, keep in mind that each row repre-
sents a current state and each column a future state. Notice that this
matrix is upper triangular, which indicates that the game never moves
back to a previous state. Furthermore, since the entries in this matrix
represent probabilities, they must sum to one for each current state
(row).

ansition Probability Matrix

5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 Found
1 0.93 0.075
2 0.93 0.075
3 0.93 0.075
4 0.93 0.075
5 0.93 0.075
6 0.93 0.075
7 0.93 0.075
8 0.93 0.075
9 0.93 0.075
1 0.91 0.088
2 0.91 0.088
3 0.91 0.088
4 0.91 0.088
5 0.91 0.088
6 0.91 0.088
7 0.91 0.088
8 0.91 0.088
9 0.91 0.088
1 0.90 0.097
2 0.90 0.097
3 0.90 0.097
4 0.90 0.097
5 0.90 0.097
6 0.90 0.097
7 0.90 0.097
8 0.90 0.097
9 0.90 0.097
1 0.90 0.104
2 0.90 0.104
3 0.90 0.104
4 0.90 0.104
5 0.90 0.104
6 0.90 0.104
7 0.90 0.104
8 0.90 0.104
9 0.90 0.104
1 0.109
2 0.109
3 0.109
4 0.109
5 0.109
6 0.109
7 0.109
8 0.109
9 0.109
d
r

Next Period State
 © 2014 Supported Intelligence LLC 21

	I. Abstract
	II. Introduction
	Outline
	Acknowledgements

	III. Characterization of the Model
	Outline of the game
	Starting points
	Path constraints
	Figure 1: Search Grid (3x3) with C[9] Shaded

	Target Motion
	example model specifics
	Figure 2: Sample Target Movement from Cell 9

	IV. Value Functional Formulation
	overview
	The Concept of Value in this Model
	State and action Spaces
	The Value functional
	Value Functional Equation (EQ 1)

	V. Results
	Overview
	A Note on Eagle’s Model
	A Comparison to Eagle’s Results
	Figure 3: Comparison of Results: Rapid Recursive® (2013) and FORTRAN H (1984)

	output Figures and Discussion
	Figure 4: Summary of Outputs by Period, Rapid Recursive® 2013
	Figure 5: Optimal Search Path and Evolution of Target Location

	VI. Conclusion
	Appendix I: References
	Software
	Scholarly publications
	Appendix II: Target Location Transition Probability Matrix
	Appendix III: Full Results Table
	Note
	Appendix IV: Input and Output Data for Recursive Model
	Figure 1: Description of Input Structure
	Figure 2: Description of Out Structure
	Figure 3: Rewards Matrix: Input.R Note the use of “-Inf” to prohibit certain actions, as described in “Path constraints” on page 4.
	Figure 4: An Excerpt from the Transition Probability Matrix: Input.P

	A Note On Reading the P Matrix

